Length: 12 hours - 2 cfu
Abstract
The course provides some basics for the application of Machine learning techniques to 3D shapes, combining aspects of Geometry Processing for the representation of 2-manifolds or volumetric structures and aspects of Machine Learning carried out on these structures.
Giorni | Aula | Orario |
13/09/2021 | Aula Meeting 4rt floor - Via Celoria 18 - 20133 Milan | 14:30-17:30 |
15/09/2021 | Aula Meeting 4rt floor - Via Celoria 18 - 20133 Milan | 14:30-17:30 |
17/09/2021 | Aula Meeting 4rt floor - Via Celoria 18 - 20133 Milan | 14:30-17:30 |
20/09/2021 | Aula Meeting 4rt floor - Via Celoria 18 - 20133 Milan | 14:30-17:30 |
Syllabus:
1st Lecture (3 hours) 14:30-17:30 13/09/2021
- Introduction to traditional ML,
mage-oriented ML applied to computer vision (1.5 h - Melzi) - Introduction to geometry processing.
Traditional digital representations for 3D models (1.5 h - Tarini)
2nd Lecture (3 hours) 14:30-17:30 15/09/2021
- Shape matching problem, ICP, non-rigid matching, local descriptors (1.5 h - Melzi)
- Spectral geometry processing (1.5 h - Melzi)
3rd Lecture (3 hours) 14:30-17:30 16/09/2021
- Convolutions on 3D data, multi-view CNN, volumetric voxel-based structures (1 h - Melzi)
- Point-based convolution:
spectral convolution, diffusion-based convolution, geodesic convolution (1.5 h - Melzi) - Edge-based convolution Mesh CNN (0.5 h - Melzi)
4th Lecture (3 hours) 14:30-17:30 22/09/2021
- Functional Maps and Data-driven approaches for Functional Maps (1.5 h - Melzi)
- PointNet and demo on region detection on human shapes (1 h - Melzi)
- Conclusion (0.5 h - Tarini)
Lecturers:
Prof. Marco Tarini (Associate Professor, Università degli Studi di Milano) – 2 hours
Dr. Simone Melzi (Researcher, Univerisità la Sapienza di Roma) – 10 hours
Assessor:
Prof. Marco Tarini (Associate Professor, Università degli Studi di Milano)
Dr. Simone Melzi (Researcher, Univerisità la Sapienza di Roma)